If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-1610=0
a = 2; b = 24; c = -1610;
Δ = b2-4ac
Δ = 242-4·2·(-1610)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-116}{2*2}=\frac{-140}{4} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+116}{2*2}=\frac{92}{4} =23 $
| 1x-10=-8+3 | | 19-m=-55 | | s-19=31 | | 1x-`10=-8+3 | | k-7=-21 | | -8x+4=-4() | | p-13=48 | | F(x)=x2+3x-40 | | p+41=51 | | 3·(2+x)=22+x | | 12x-8x=10x+7-2x | | (x+15)+×+(×-7)=877 | | 6y–3y–5=–3+23 | | 5x+9=-2x+30 | | (u+4)×10=50 | | 2.9p-7.3=-0.3+1.9p | | 5r+30=5r+20 | | (q-9)×6=12 | | 5x+9=-2x+-4 | | 20/100*x=27 | | 4−9x=−14 | | n(n-3)/2=n | | 12/n+8=10 | | -(x-8)+4x=2(2-4)+x | | -(x-8)+4x=2(x-x)+x | | -(x-8)+4x=2(x-2)+x | | x+1=1/2x+4 | | y=2/3(-3)-6 | | X/6+8x/9=x/54 | | 6−1x=−1/3 | | -(x-8)+4x=2(2x-4)+x | | .20d=d+120 |